
J. Fluid Mech. (2005), vol. 545, pp. 397–426. c© 2005 Cambridge University Press

doi:10.1017/S0022112005006907 Printed in the United Kingdom

397

The drag on a microcantilever oscillating
near a wall

By R. J. CLARKE1, S. M. COX2, P. M. WILLIAMS3

AND O. E. JENSEN1

1Division of Applied Mathematics, School of Mathematical Sciences,
University of Nottingham, University Park, Nottingham NG7 2RD, UK

2School of Mathematical Sciences, University of Adelaide, Adelaide 5005, Australia
3Laboratory of Biophysics and Surface Analysis, School of Pharmacy,

University of Nottingham, University Park, Nottingham NG7 2RD, UK

(Received 19 August 2004 and in revised form 6 June 2005)

Motivated by devices such as the atomic force microscope, we compute the drag
experienced by a cylindrical body of circular or rectangular cross-section oscillating
at small amplitude near a plane wall. The body lies parallel to the wall and oscillates
normally to it; the body is assumed to be long enough for the dominant flow to be
two-dimensional. The flow is parameterized by a frequency parameter γ 2 (a Strouhal
number) and the wall–body separation ∆ (scaled on body radius). Numerical solutions
of the unsteady Stokes equations obtained using finite-difference computations in
bipolar coordinates (for circular cross-sections) and boundary-element computations
(for rectangular cross-sections) are used to determine the drag on the body. Numerical
results are validated and extended using asymptotic predictions (for circular cylinders)
obtained at all extremes of (γ, ∆)-parameter space. Regions in parameter space for
which the wall has a significant effect on drag are identified.

1. Introduction
The leading-order flow generated by an isolated body oscillating at small amplitude

with frequency ω, in fluid of density ρ and viscosity µ, is described by the unsteady
Stokes equations

ρ
∂U
∂t

= −∇P + µ∇2U, ∇ · U = 0, (1.1)

where U, P are the fluid velocity and pressure, respectively. Unsteady inertial forces
confine the diffusion of vorticity away from the surface of the body to a distance of
O(L), where L = (µ/(ρω))1/2. In quasi-steady motion, when L is large compared
to the diameter of the body, the presence of a boundary confining the flow is likely
to have a profound effect on the body’s motion, consistent with the well-known
long-range character of Stokes flows. For two-dimensional flows in particular, the
drag experienced by the body is likely to depend at leading order on its distance
from the boundary (albeit logarithmically when the body is far from the boundary).
At high frequencies, even though viscous effects may be confined to the immediate
neighbourhood of any solid surfaces, it is less obvious what role external boundaries
may play. This paper addresses this fundamental issue for two-dimensional flows, by
determining the drag on an oscillating body in the presence of a rigid wall.
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There are numerous applications in which such considerations are significant, in-
cluding ultrasonics, electroacoustics and microelectromechanical systems. The motiva-
tion of the present study is the atomic force microscope (AFM), a widely used device
in which a small cantilever oscillates in close proximity to a solid surface, often
at high frequencies, in response to external driving (in so-called tapping mode) or
thermal fluctuations of the surrounding fluid (either liquid or gas). The cantilever,
which is much greater in length than in width, and which typically operates less
than a width away from the substrate, may be assumed to generate a flow that is
predominantly two-dimensional away from its ends. Deflections of the cantilever are
measured using a reflected laser beam, from which the loading on the cantilever
can be inferred once the cantilever’s spring constant is accurately known. However,
determining the spring constant for a given cantilever is a non-trivial exercise and
a common calibration technique involves analysis of the spectrum of the cantilever
under thermal driving. The influence of a nearby wall shows clearly in these spectra.
Benmouna & Johannsmann (2002) and Nnebe & Schneider (2004), for example, show
how the resonant peaks of the thermal spectra flatten as the cantilever approaches
the wall, although a number of effects (not just hydrodynamic) may be responsible
for this behaviour. Current models of the AFM either do not account explicitly for
hydrodynamic interactions between the cantilever and the wall (e.g. Sader 1998) or
are restricted to quasi-steady approximations (e.g. Vinogradova et al. 2001; Alcaraz
2002). One contribution of the present study is to provide improved understanding
of the role of a nearby solid boundary on the hydrodynamic load placed on an
oscillating cantilever over a wide range of frequencies. This should not only aid the
calibration effort, but also provide a means to distinguish between hydrodynamic
loading and interactions between the wall and cantilever tip of non-hydrodynamic
origin.

Numerous workers have addressed the problem of the unsteady drag on an
isolated body oscillating at small amplitude following Stokes’ (1851) treatment of
a cylinder and sphere (see Rosenhead 1963). His expression for the drag on an
oscillating sphere may be decomposed into the steady (Stokes) drag, an added-
mass term and a history-dependent term often called the Basset force (Basset 1888).
Lawrence & Weinbaum (1986, 1988) demonstrated that this decomposition does
not carry over to axially oscillating spheroids, for which the body’s non-spherical
geometry produces a complicated fourth drag component. Despite its complexity, a
good approximation could be made to this additional drag component by taking a
suitable linear combination of the Basset force and the first inertial correction to
the steady Stokes drag. Although this ad hoc approximation was developed from
results for axially oscillating spheroids, its applicability has been shown to be quite
general. Pozrikidis (1989a) demonstrated its success in approximating the drag on a
transversely oscillating spheroid, and Loewenberg (1993) showed that the Lawrence &
Weinbaum (1988) result could also reliably approximate the drag on axially and
transversely oscillating cylinders, provided that they have moderate aspect ratio.
Lovalenti & Brady (1993) showed how both unsteady and weak convective inertia
contribute to the drag on an impulsively moving sphere.

Numerical methods have been employed for geometrically more complex bodies.
Both Pozrikidis (1989a) and Loewenberg (1993) determined the full oscillatory
flow generated by an oscillating body using numerical methods exploiting the
unsteady Stokeslet. (Pozrikidis 1989a gives the three-dimensional oscillatory Stokeslet;
Avudainayagam & Geetha 1993, 1995 give the two-dimensional Stokeslet for
oscillatory and impulsive forcing respectively.) Pozrikidis (1989a) used a singularity
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method to determine the flow generated by oscillations of a solid sphere, a spherical
drop and a spheroid, and a boundary-integral method (Pozrikidis 1989b) to compute
the flow generated by oscillating spheroids, dumbbells and biconcave disks. One of
the main features of these results is the appearance of viscous eddies on the surface
of the bodies, which eventually detach and dissipate in the bulk flow. Smith (1995,
1997) described the mechanism of flow reversal in some detail. A boundary-integral
formulation was adopted to investigate the flows generated by axial (Loewenberg
1994b) and transverse (Loewenberg 1994a) oscillations of a finite-length cylinder,
which were shown to exhibit qualitative differences from the smooth-body results
produced by Pozrikidis (1989a). An alternative boundary-integral formulation was
developed earlier by Tuck (1969) to describe the two-dimensional flow generated by
the transverse oscillations of an infinitely long cylinder with arbitrary cross-section.
This integral equation was then solved numerically, using a boundary-element method,
for the case of an infinitely thin plate. It was found that the drag exerted on the plate
is similar to that felt by a circular cylinder with diameter equal to the plate width,
an approximation exploited in the AFM context by Sader (1998) and others. The
two-dimensional plate, oscillating in unbounded fluid, had already been studied in its
own right by Kanwal (1955), who used elliptic coordinates to represent the flow as
an infinite series involving Mathieu functions.

Oscillatory flows generated by isolated disks have been determined using dual
integral-equation methods by Davis (1993) and Zhang & Stone (1998). Feng,
Ganatos & Weinbaum (1998a) treated the mathematically equivalent problem of a
disk moving in a Brinkman medium (discussed further below). Tekasakul, Tompson,
& Loyalka (1998) provide an overview of oscillatory flows generated by a variety of
axisymmetric bodies.

Fewer studies of oscillatory flows have accounted for the presence of nearby walls.
Chu & Kim (2002) determined the oscillatory two-dimensional flow around a semi-
infinite plate parallel to a wall; they later extended the dual-integral-equation method
of Zhang & Stone (1998) to describe a disk undergoing rotational and translation
motions above a plane wall (Chu & Kim 2004). Singularity-based methods can
be adapted to account for the presence of a wall using the method of images
(Pozrikidis 1992). For quasi-steady flows this is a standard and effective strategy:
Blake (1971), using Fourier transforms, showed that the image system for a Stokeslet
in a plane wall is a second Stokeslet, a dipole and a stresslet (a force-doublet).
This compact representation has been incorporated in, for example, slender-body
theories for rods near walls (Blake 1974; Russel et al. 1977). A finite number of image
singularities, appropriately located, can be used to describe flows of considerable
geometric complexity, for example the Stokes flow generated by moving one cylinder
inside another (Finn & Cox 2001). For oscillatory flows, image methods are less
straightforward. As shown by Pozrikidis (1989a) in three dimensions and Chu &
Kim (2001) in two dimensions, to satisfy no-slip and no-penetration conditions on a
wall, an oscillatory Stokeslet must be supplemented with an image system reflected
in the wall plus a distribution of singularities along the wall. Smith (1987, 1993), for
example, gives the image systems for impulsive two-dimensional Stokeslets and rotlets
in the presence of external boundaries. While computations with this method are still
feasible (see below), they are more elaborate than in the quasi-steady case.

Brinkman’s equation is a model for flow in porous media that is valid at low
solid volume fraction (Durlofsky & Brady 1987); it is mathematically equivalent to
oscillatory Stokes flow, but with L interpreted as the Brinkman screening length.
Studies of the motion of bodies in a Brinkman medium therefore have relevance
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to oscillatory flows. Kim & Russel (1985) examined the flow due to two spheres
in a Brinkman medium using the method of reflections and a boundary collocation
technique. Feng, Ganatos & Weinbaum (1998b) computed the flow due to a translating
sphere in the presence of a plane wall, employing a boundary-integral technique
that exploits symmetry but requires the solution of integral equations on all solid
boundaries. Broday (2002) used a boundary-integral method to determine the drag
on a spherical bead near a planar interface between two Brinkman media, while
Sugihara-Seki (2004) used a finite-element method to compute the motion of a sphere
in a cylindrical tube. The motion of a two-dimensional body in a Brinkman medium
near a rigid boundary does not appear to have been studied in any detail.

The linearized momentum equation (1.1) describes the leading-order flow in the
limit in which the amplitude of oscillation is small compared to the body diameter.
At higher orders, nonlinearities associated with convective inertia lead to steady
streaming, which produces irreversible migration of fluid particles over time (Riley
2001). While recognizing that this effect may sometimes be significant experimentally,
we do not account for it below.

Since the primary application addressed here is the AFM, involving microcantilevers
of micron-scale thickness (although considerably greater length and width), it is
prudent to consider the validity of the traditional Navier–Stokes/no-slip hydro-
dynamic model. One advantage of the AFM over other imaging systems is that
it enables biological samples to be investigated in a liquid environment, where
hydrodynamic effects are likely to be particularly significant. This work is conducted
primarily with such applications in mind. When the cantilever operates far from a
substrate, we expect slip at the smooth cantilever surface to be weak (molecular-
dynamics simulations show the slip length of room-temperature water to be as low
as O(1 nm) (Thompson & Troian 1997), while experiments suggest the slip length
on smooth hydrophobic surfaces is around 20 nm (Cottin-Bizonne et al. 2005), much
less than the 10 µm cantilever width). However when operating very near a substrate
(at imaging distances of 1 µm or less), such as a complex biological interface in a
liquid environment, slip effects are likely to be much more significant (as are other
effects such as non-uniform topography, interfacial compliance, etc.). For an AFM
operating far from a substrate in air at normal temperatures and pressures, the
Knudsen number Kn ≈ 0.007 (the ratio of the molecular mean-free path 70 nm to a
typical flow dimension, such as the 10 µm cantilever width), a regime in which Navier–
Stokes with a slip condition should be appropriate (Roy et al. 2003). However, when
operating in air very close to a substrate (at 1 µm or less), Kn � 0.07, a regime in which
slip effects become substantial and the continuum approximation is questionable. The
validity of the continuum model for the present problem in this regime was tested
by molecular gas dynamics simulations by Gallis & Torczynski (2004). Thus, while
the conventional no-slip model provides a useful starting point, we recognize that
slip and other effects may limit the validity of the results presented below in certain
circumstances.

In this paper we determine the unsteady two-dimensional Stokes flow generated
by a cantilever oscillating normal to its axis when it lies parallel to a rigid wall.
By prescribing the frequency of the cantilever’s motion, we construct a temporal
Fourier transform that can later be used to determine, for example, the small-
amplitude motion of a microcantilever oscillating in response to thermal fluctuations.
We examine two cantilever cross-sections, one circular and the other rectangular,
and assume that the dominant flow at any station along the cantilever (away from
the ends) is two-dimensional. The governing equations are given in § 2. We compute
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Figure 1. (a) Cartesian geometry of the flow domain in non-dimensional units in the case of
either a circular cantilever (dotted line) or a rectangular cantilever (dashed line). (b) Bipolar
coordinates (3.1) map the geometry for a circular cantilever to a finite rectangular domain.

the drag numerically, employing finite-difference and boundary-element methods for
circular and rectangular cantilevers, respectively (§ 3). We validate and extend these
results by developing asymptotic expressions for the drag on a circular cantilever
(§ 4). Our coverage of parameter space is systematic (see figure 2 below) and exploits
a variety of asymptotic techniques. We show in § 5 how the drag on the cantilever
is affected by cantilever shape, oscillation frequency and distance from the wall. Our
main conclusions and implications for the operation of the AFM (including the
leading-order effects of slip) are discussed in § 6.

2. Model
We consider the two-dimensional unsteady flow satisfying (1.1) generated by

small-amplitude vertical oscillatory motion of a cantilever, with either a circular
or rectangular cross-section, aligned parallel to an infinite rigid horizontal wall. The
circular cantilever has radius R; the rectangular cantilever has horizontal width 2R

and vertical thickness 2h. In Cartesian coordinates (x, y), the wall lies at y = 0 and
the centre of the cantilever lies at (0, y0) (see figure 1a). The cantilever oscillates
normal to the wall with frequency ω, with an amplitude of oscillation that is small
compared with h and R.

We seek solutions of (1.1) of the form U(x, y, t) = Re
(
u(x, y)eiωt

)
, P (x, y, t) =

Re
(
p(x, y)eiωt

)
, yielding

iρωu = −∇p + µ∇2u, ∇ · u = 0, (2.1)

which must be solved subject to the boundary conditions

u |S = V j , u(x, 0) = 0 for −∞ < x < ∞, u → 0 as |x| → ∞, (2.2)

where j ≡ (0, 1), V ≡ Aω is the cantilever’s maximum speed and S is the cantilever’s
surface. At small amplitudes we may linearize the boundary conditions on the body
or, equivalently, take S to be fixed in (2.2).

As discussed in § 1, in some circumstances it may be necessary to replace the no-slip
condition with a Navier-slip condition. Thus on S, for example, where the unit tangent
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and normal are t and n respectively, we replace (2.2a) with u · n = V j · n and

(u · t) − V ( j · t) = L(R/µ) (t · σ · n). (2.3)

Here L � 1 is the dimensionless slip length (scaled on R) and σ = −Ip+µ(∇u+∇uT )
is the stress tensor. A similar condition applies on y = 0. We will examine the effect
of slip on drag in a couple of instances (see Appendix C below), but otherwise assume
no-slip applies.

Rescaling time on ω−1, lengths on R, speeds on V and pressure on µV/R recasts
(2.1) and (2.2) in the form

iγ 2u = −∇p + ∇2u, ∇ · u = 0, (2.4a)

u|S = j , u(x, 0) = 0 for −∞ < x < ∞, u → 0 as |x| → ∞, (2.4b)

where γ 2 = R2ρω/µ; γ −1 is a measure of the distance over which vorticity diffuses
during an oscillation relative to the cantilever’s diameter. The rescaling also generates
a second dimensionless parameter, ∆ = (y0−W )/R, where for circular (or rectangular)
cantilevers W = R (or W = h); ∆ measures the minimum distance between S and
the wall, in terms of the cantilever’s diameter (see figure 1a). We also define a
streamfunction ψ by u = (ψy, −ψx), where subscripts x and y denote derivatives.
Taking the curl of (2.4a) yields

iγ 2∇2ψ = ∇4ψ, (2.5a)

ψ(x, 0) = 0, ψy(x, 0) = 0, ψx |S = −1, ψy |
S

= 0, ψ → 0 as |x| → ∞. (2.5b)

Symmetry of the flow about x = 0 means that we need consider the flow only in the
quadrant x � 0, y � 0 (figure 1a).

The primary objective of this study is to calculate the drag per unit length D on
the cantilever and to assess how this is influenced by ∆, γ and the cantilever’s shape.
The non-dimensional drag (scaled on µV ) is

D =

∫
S

j · σ · n ds. (2.6)

We now describe the two different numerical techniques that are employed to
determine the flow generated by circular and rectangular cantilevers (§ 3) and the
asymptotic results that are used to validate and extend the results for circular
cantilevers (§ 4).

3. Numerical methods
3.1. Circular cantilevers: finite-difference method

When the cantilever is circular, the geometry of the flow lends itself to cylindrical
bipolar coordinates (ξ, η), defined by (Jeffery 1921)

x = − c sin ξ

cosh η − cos ξ
, y =

c sinh η

cosh η − cos ξ
, c =

√
∆(∆ + 2). (3.1a–c)

In this coordinate system, the flow domain in x � 0 maps to the rectangle −π � ξ � 0,

0 � η � η1 ≡ cosh−1(1 + ∆) (see figure 1b). However, we gain this finite rectilinear
geometry at the cost of losing separability in our governing equation (2.5a), which
becomes

iγ 2c2∇2ψ = ∇2((cosh η − cos ξ )2∇2ψ). (3.2)
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We discretize (3.2) using a finite-difference method on a uniform mesh and solve the
resulting linear system of equations by Gaussian elimination. Following Jeffery (1921)
we choose to work with (cosh η − cos ξ )ψ/c rather than with ψ itself, as this results in
a simpler form for the operator and the boundary conditions. As γ is increased the
demand for mesh points also increases, to resolve the boundary layers that arise on
the cantilever and wall. We obtained solutions for γ � 30 on a 200 × 200 mesh, with
convergence verified on a 350 × 350 mesh and validation provided by comparison
with asymptotic results derived in § 4.

3.2. Rectangular cantilevers: boundary-element method

For rectangular cantilevers we follow Pozrikidis (1989b) and Loewenberg (1994b) and
use a two-dimensional version of their boundary-integral formulation. For transverse
oscillations, Pozrikidis (1989b) gives the following first-kind Fredholm equation for
the velocity field u in a domain with boundary B and unit outward normal n:

uj (x0) = − 1

4π

∫
B

fi(x)Sij (x̂) ds(x), fi(x) = σiknk − iγ 2ukxkni, (3.3)

where x0 ∈ B and x̂ = x − x0. The oscillatory free-space Stokeslet Sij is
(Avudainayagam & Geetha 1998)

Sij (x̂) =
2

iγ 2

(
δij

r̂2
− 2x̂i x̂j

r̂4

)
− 2K0(

√
iγ r̂)

(
δij − x̂i x̂j

r̂2

)
− 2K1(

√
iγ r̂)√

iγ r̂

(
δij − 2x̂i x̂j

r̂2

)
,

(3.4)

where r̂ = |x̂| and
√

i ≡ (1 + i)/
√

2. High demands on the resolution required to
capture viscous boundary layers, and the oscillatory nature of the kernel, both place a
practical upper limit on the size of γ and for this reason we also employ a boundary-
layer formulation at high frequencies. Here an approximation for the drag on the body
is obtained by solving separately for the leading-order inviscid flow, Stokes layers
on the solid boundaries and the second-order inviscid flow driven by fluid ejected
from the Stokes layers (this secondary inviscid flow makes an O(γ ) drag contribution,
comparable in size to the boundary-layer contribution; note that this linear inviscid
flow is distinct from the nonlinear streaming flows that are also generated by Stokes
layers, but which we here neglect). The inviscid flows are determined using the
standard boundary-integral formulation for the potential flow u = ∇φ (Pozrikidis
1996)

φ(x0) =
1

π

∫
B

V ′ · n ln r̂ ds(x) − 1

π

∫
−

B

x̂ · n
r̂2

φ(x) ds(x) (3.5)

with the second integral taking its Cauchy principal value. Setting V ′ = j on the
cylinder and 0 on the wall in (3.5) yields an expression for the potential of the primary
inviscid flow φ(1). Boundary layers on the solid surfaces drive a secondary potential
flow φ(2), which can be expressed using (3.5) once we have extracted the value of V ′

from the boundary-layer flows. Within this asymptotic limit, an approximation for
the drag is then given by

D = i

∫
B

(
γ 2φ(1) + γφ(2)

)
ds(x) +

√
i

∫
Bv

γ (vs − 1) ds(x), (3.6)

where Bv represents the vertical sides of the cantilever and vs = φ(1)
y |Bv

is the slip
velocity on these vertical sides. (The corresponding asymptotic expression for the drag
on a circular cantilever is derived in § 4.2.2 below.)
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Boundary-element methods provide a computational route to solving (3.3) and
(3.5) for the modified traction f (x) and flow potential φ(x), respectively. Discretizing
the cantilever’s surface and the wall into N boundary elements, approximating the
geometry of the boundary in the kth element with the simple polynomial curve Bk ,
with mid-point x(k)

0 , and assuming that f (x), φ(x) are constant on each boundary
element, we can rewrite (3.3) and (3.5) as the following systems of linear equations,
respectively:

uj

(
x(m)

0

)
= − 1

4π

N∑
k=1

Ak
ij

(
x(m)

0

)
fi

(
x(k)

0

)
, Ak

ij

(
x(m)

0

)
=

∫
Bk

Sij

(
x, x(m)

0

)
ds(x), (3.7a)

φ
(
x(m)

0

)
=

1

π

N∑
k=1

(
(V ′ · n)k

∫
Bk

ln
∣∣x − x(m)

0

∣∣ ds(x) − φk

∫
−

Bk

(
x − x(m)

0

)
∣∣x − x(m)

0

∣∣2 · n ds(x)

)
,

(3.7b)

for m = 1, . . . , N , where φk = φ(x(k)
0 ), which are solved by Gaussian elimination.

Logarithmic singularities at x = x0 are dealt with in the usual fashion, namely an
interval is taken around the singularity, within which the asymptotically expanded
kernel is integrated analytically.

The non-smooth shape of the cantilever also requires special attention, as we
expect singular behaviour in |σ · n| at the cantilever corners. We follow Loewenberg
(1994b) and adjust the spacing of the boundary elements at the corners to account for
O(s−1/2) and O(s−1/3) viscous and inviscid singularities, respectively, where s measures
the distance from the corner. The contributions to the drag from the two-dimensional
boundary layers wrapped around each corner are subdominant to terms in (3.6)
(Loewenberg 1994b).

All sides of the square cantilever had 15 clustered boundary elements per half-
length (or 10 for higher aspect ratios). For the values of γ considered here, decay of
the unsteady flow away from the cantilever meant that wall integrals up to |x| = 10
sufficed. Wall sub-intervals [0, 2] and [2, 10] were each partitioned into 25 uniformly
spaced boundary elements, with the higher density of elements in [0, 2] designed to
capture the more rapidly varying wall stresses underneath the cantilever. Numerical
convergence was verified by doubling the number of boundary elements on all surfaces
and extending wall elements from 0 to 20. Numerical results are presented in § 5 below.

4. Asymptotic limits for a circular cantilever
Figure 2 charts the distinct asymptotic regions (I–VI) of (γ, ∆)-parameter space

for a circular cantilever. In § 4.1 we treat the case where the distance that vorticity
diffuses over one oscillation is much greater than the wall–cantilever separation
(∆ � γ −1) and wall effects are controlled by viscosity. In § 4.2 the converse situation
is investigated (∆ � γ −1), where inviscid wall interactions dominate. Finally § 4.3
describes the transition between these two states (∆γ = O(1)). In the following we
denote the boundaries between regions (IV and V, say) as IV/V.

4.1. Viscous wall interactions: ∆ � γ −1

4.1.1. Small separations: region IV, ∆ � min(1, γ −4/3)

When the cantilever is close to the wall (region IV) we can model the flow in the
gap between these two surfaces using lubrication theory, approximating the surface
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ln ∆

ln γ

I

II

III
IV

V

VI

∆ ~ γ–4/3 ∆ ~ γ–1

Figure 2. Asymptotic regions of (γ, ∆)-parameter space for a circular cantilever. A sketch
inside each region shows the physical picture, with dotted lines indicating the distance over
which vorticity diffuses during one oscillation.

of the cantilever with the parabola y = ∆ + (x2/2). Rescaling using

y = ∆ y̌, x = ∆1/2 x̌, u = ∆−1/2 ǔ, v = v̌, p = ∆−2 p̌, ψ = ∆−3/2 ψ̌, (4.1)

the governing equations for the streamfunction become at leading order

ψ̌ y̌y̌y̌ = p̌x̌ , p̌y̌ = 0, (4.2a)

ψ̌ x̌(x̌, 0) = 0, ψ̌ y̌(x̌, 0) = 0, ψ̌ x̌(x̌, 1 + x̌2/2) = −1, ψ̌ y̌(x̌, 1 + x̌2/2) = 0, (4.2b)

which yields

ψ̌ = − 2x̌y̌3(
1 + 1

2
x̌2

)3
+

3x̌y̌2(
1 + 1

2
x̌2

)2
, p̌ = − 24

(2 + x̌2)2
, (4.3)

so that

D = 3
√

2π∆−3/2 + O(∆−1/2), (4.4)

in agreement with Jeffrey & Onishi (1981). The flow outside the gap provides an O(1)
contribution to D when γ � 1. For 1 � γ � ∆−3/4, the leading-order drag outside
the lubrication region is O(γ 2) but remains sub-dominant to (4.4). We discuss the
case in which these contributions become comparable in § 4.3.2 below.

4.1.2. Moderate separations: region IV/V, ∆ = O(1), γ � 1

When γ � 1 and ∆ = O(1), (2.4a) reduces to the steady Stokes equations

0 = −∇p + ∇2u, ∇·u = 0, (4.5)

subject to (2.4b). The steady Stokes problem of a circular cylinder translating
perpendicularly to a horizontal wall was solved as a finite series in bipolar coordinates
(3.1) by Jeffrey & Onishi (1981). A more compact form of the solution may be
obtained using complex-variable techniques, such as adopted by Finn & Cox (2001),
who determined the quasi-steady flow generated by one circular cylinder translating
inside another. From their closed-form solution, we take the limit in which the
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radius of the outer cylinder tends to infinity and recover a solution which reveals the
singularity structure of the flow:

ψ = β1

(
x

2
ln

r+

r−
− 2cx(y + c)

r+

+
2c2x

r+

)
+ β2

(
x

2
ln

r−

r+

+
2cx(y − c)

r−
+

2c2x

r−

)
, (4.6)

where r+ = x2 + (y + c)2, r− = x2 + (y − c)2, c is given by (3.1c) and

β1 =
c + ∆ + 1

c − ∆ − 1
β2, β2 = (c − ∆ − 1)

(
2c + (1 + ∆) ln

(
1 + ∆ − c

1 + ∆ + c

))−1

. (4.7)

Defining

M =

(
1 0
0 −1

)
, (4.8)

(4.6) can be interpreted as a superposition of (i) two Stokeslets within the cylinder
at (0, c) of strengths −β1 j and β2 j , (ii) two image Stokeslets at (0, −c) of strengths
β1 j and −β2 j , (iii) a stresslet at (0, −c) of strength −cβ1M, (iv) a stresslet at (0, c)
of strength cβ2M and (v) dipoles at (0, −c) and (0, c) of strengths c2β1 j and c2β2 j
respectively. This description of the flow in terms of these singularities immediately
gives the leading-order drag on the body to be

D = (β2 − β1) = −8π(1 + ∆)

(
2c + (1 + ∆) ln

(
1 + ∆ − c

1 + ∆ + c

))−1

, (4.9)

which is the net strength of the Stokeslets inside the cantilever. For ∆ � 1, (4.9)
reduces to (4.4). It is instructive to obtain the large-∆ limit of (4.9) using an
independent argument, as follows.

4.1.3. Large separations: region V, 1 � ∆ � γ −1

Even though in region V the wall–cantilever separation distance is large, the
cantilever oscillates so slowly that vorticity diffuses a distance much greater than the
distance to the wall during an oscillation. Thus we expect the cantilever to generate
an O(ln∆) flow at the wall. An image flow of similar magnitude must be present
to allow the boundary conditions at the wall to be satisfied. This is determined as
follows. Setting x = ∆x̆, p = ∆−1p̆, ψ = ∆ψ̆ and D = ∆−1D̆ gives the following
form for (2.4a):

−∇̆p̆ + ∇̆2u = O((∆γ )2), ∇̆ · u = 0. (4.10)

Since ∆γ � 1 in region V, we have a quasi-steady flow at leading order. Suppose a
point force is located at x̆ = (0, 1) of unknown strength 4πA, orientated perpendicular
to the wall, on which no slip and no penetration are satisfied. Liron & Blake (1981)
give the streamfunction for the resulting flow as

ψ̆ = A

(
x̆ ln

√
x̆2 + (y̆ − 1)2

x̆2 + (y̆ + 1)2
+

2x̆(y̆ + 1)

x̆2 + (y̆ + 1)2
− 2x̆

x̆2 + (y̆ + 1)2

)
. (4.11)

We can identify the singularity structure of (4.11) as comprising Stokeslets of non-
dimensional strength 4πA j at (0, 1) and (0, −1), a dipole of strength −4πA j at (0, −1)
and a stresslet of strength 4πAM at (0, −1). We now modify (4.11) to produce a flow
that satisfies no slip and no penetration at the cantilever’s surface. The flow near the
cylinder is assumed to be a superposition of a Stokeslet, uniform flow and dipole of
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the form

ψ = Bx ln
√

x2 + (y − 1 − ∆)2 + Cx + Ex/(x2 + (y − 1 − ∆)2); (4.12)

the boundary conditions on the cantilever surface are satisfied by choosing C =
−1 − B/2 and E = B/2. Using the requirement that the outer flow (4.11) evaluated
near the cylinder matches the inner flow (4.12) evaluated far from the cylinder, it can
be shown (by intermediate matching) that

B = (ln ∆)−1 + (ln∆)−2(1 − ln 2) + O( (ln ∆)−3 ), A = ∆B. (4.13)

Thus the drag is given by the strength of the Stokeslet inside the cantilever

D =
4π

ln ∆
+

4π (1 − ln 2)

(ln ∆)2
+ O

(
1

(ln ∆)3

)
, (4.14)

in agreement with (4.9) for ∆ � 1. We shall exploit this constructive method again
in § 4.3.1 below.

4.2. Inviscid wall interactions: ∆ � γ −1

4.2.1. Large separations: regions VI and I, ∆ � max(1, γ −1)

On the region VI/I boundary (∆ � 1, γ = O(1)) the flow is largely inviscid. The
flow must satisfy no penetration at the wall and (far from the cantilever) can be
described by a dipole at the centre of the cantilever together with its image dipole in
the wall. The flow produced by the image dipole is very weak at the cantilever, with
velocity of order ∆−2, and so the drag is approximately that exerted on an oscillating
cylinder in unbounded fluid (Stokes 1851):

D = πiγ 2

(
1 +

4K1(
√

iγ )√
iγK0(

√
iγ )

)
(4.15)

subject to an O(∆−1γ 2) error, due to the generation of a cantilever surface pressure
of this size from the image dipole (see Appendix C for the effect of slip on this drag
result).

Taking the limit γ � 1 in (4.15), we obtain the drag in region VI (γ � 1):

D = − 4π

ln γ
+

4πc0

(ln γ )2
− 4πc2

0

(ln γ )3
+

4πc3
0

(ln γ )4
+ O

(
1

(ln γ )5

)
, c0 =

(
iπ

4
+ ε0 − ln 2

)
,

(4.16)

where ε0 ≈ 0.57721 is Euler’s constant. When γ � 1, (4.15) gives the leading-order
drag in region I:

D = πiγ 2 + 4π
√

iγ + 3π + O(γ −1), (4.17)

provided that ∆ � γ . When this is the case, the wall–cantilever interaction does not
feature in the O(γ ) secondary flow and so the drag is successfully approximated by that
exerted on a circular cantilever oscillating in an unbounded fluid. However, if ∆ � γ

then the secondary O(γ ) flow is described by a collection of inviscid singularities
located at the centre of the cantilever, together with their images in the wall. Rather
than determine these directly, we use the Fourier-series method outlined below.

4.2.2. Moderate and small separations: regions I and II, γ � max(1, ∆−1)

On the region I/II boundary (∆ = O(1), γ � 1) we write

p = γ 2p(0) + γp(1) + · · ·, u = u(0) + γ −1u(1) + · · ·, (4.18)
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and (2.4a) implies that

iu(0) = −∇p(0), iu(1) = −∇p(1), (4.19a, b)

where u(0)(x, 0) = 0 and u(0)|S = j . Thus the primary and secondary flows are
both inviscid with viscous effects restricted to thin boundary layers on the solid
surfaces. Furthermore, the boundary layers that match to u0 determine the boundary
conditions for u(1). The secondary inviscid flow provides an O(γ ) drag contribution,
commensurate with that from the boundary layers, which requires its retention.

A Fourier-series solution for the leading-order inviscid flow may be found by
mapping the infinite Cartesian flow domain into a finite rectangular domain using
bipolar coordinates (3.1) (see Appendix A), giving

ψ (0) = 2c

∞∑
n=1

en sinh(nη) sin(nξ ), en =
e−nη1

sinh(nη1)
, (4.20)

where η1 = cosh−1(1 + ∆), from which we determine the slip velocities us
c on the

cantilever and us
w on the wall. Using (4.19a) and (4.20) it is straightforward to show

that the pressure is given by

p(0) = 2ic

∞∑
n=1

en cosh(nη) cos(nξ ), (4.21)

from which the leading-order O(γ 2) drag may be determined.
Writing y = γ −1ỹ, we find the usual Stokes boundary layer on the wall in the form

u(x, ỹ) = us
w(x)(1 − e−

√
iỹ) + O(γ −1). (4.22)

By transforming into polar coordinates with origin at the cantilever centre (x =
r cos θ, y = 1 + ∆ + r sin θ), and rescaling radial distances r = 1 + γ −1r̃ , we find a
Stokes boundary layer on the cantilever surface

uθ (r̃ , θ) = us
c(θ) −

(
us

c(θ) − cos θ
)
e−

√
ir̃ + O(γ −1), (4.23)

where uθ is the azimuthal component of velocity. The normal boundary-layer velocities
drive the secondary O(γ ) inviscid outer flow, imposing upon it the following boundary
conditions:

ψ (1)(1, θ) = i−1/2
(
− cos θ + us

c(θ)
)
, ψ (1)(x, 0) = −i−1/2us

w(x), (4.24)

which correspond to conditions at η = 0 and η = η1 in bipolar space.
By expressing the boundary conditions (4.24) as a Fourier sine series in bipolar

coordinates (see Appendix A), we can write the secondary inviscid flow as

ψ (1) =

∞∑
n=1

(an cosh nη + bn sinh nη) sin nξ, (4.25)

where

an =
1√
i
[(n − 1)en−1 + (n + 1)en+1 − 2nen], (4.26a)

bn =
1√
i
[2 (n dn + c) en − (dn − c) (n − 1) en−1 − (dn + c) (n + 1) en+1], (4.26b)
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with dn = (2 + ∆)/ tanh nη1. The secondary pressure is then

p(1) = i

∞∑
n=1

(an sinh nη + bn cosh nη) cos nξ, (4.27)

which, when combined with (4.21) and (4.23) and converted to polar coordinates,
gives the drag

D = −γ 2

∫ 2π

0

p(0)(θ) sin θ dθ −γ

∫ 2π

0

(
p(1)(θ) sin θ −

√
i
(
us

c(θ)−cos θ
)
cos θ

)
dθ, (4.28)

where p(0), p(1) and us
c are given by (4.21), (4.27) and (A 4a), respectively. We show in

§ 5 below how (4.28) matches to (4.17) for sufficiently large ∆. The small-∆ limit of
(4.28) is discussed in § 4.3.2 below.

4.3. Viscous/inertial wall interactions: ∆γ = O(1)

We now consider situations in which the interaction between the particle and the wall
is mediated by both viscous and unsteady inertial effects. This occurs primarily when
the parameter τ ≡ ∆γ = O(1).

4.3.1. Large separations: region V/VI, ∆ ∼ γ −1 � 1

Between regions V and VI, the length scale for viscous diffusion is comparable to
the separation between the cantilever and the wall. As in § 4.1.3, we find the flow
by sequential construction, first introducing an oscillating two-dimensional Stokeslet
(Avudainayagam & Geetha 1993), of unknown strength, combined with a dipole,

ψ = C

(
−1

r

(
1 +

2K1(
√

iγ )√
iγK0(

√
iγ )

)
+

2K1(
√

iγ r)√
iγK0(

√
iγ )

)
cos θ, (4.29)

where (r, θ ) are polar coordinates centred on the cantilever. As these singular solutions
induce non-zero flow at the wall, we must also add their image system (Chu & Kim
2001)

ψI = C

∫ ∞

0

[
− A1((k + q)e−k(y+2∆) − 2ke−q(y+∆)−∆k)

− A2

iγ 2

(
k

q
(k + q)e−q(y+2∆) − 2ke−k(y+∆)−∆q

)]
sin kx

(k − q)
dk, (4.30)

where q =
√

iγ 2 + k2, A1 = 1 + 2K1(
√

iγ )/
√

iγK0(
√

iγ ) and A2 = 2/K0(
√

iγ ). At
leading order, the image system generates a uniform flow near the cantilever,
as can be seen by asymptotically evaluating the integral in (4.30) to give ψI =
Cx∆−2I (τ, γ ) + O(∆−1), where

I (τ, γ ) =

∫ ∞

0

[
−A1

(
u(u + q2) e−2u

(u − q2)

)
− A2

iγ 2

u2(u + q2) e−2q2

q2 (u − q2)

+ 2

(
A1 +

A2

iγ 2

)
u2 e−(u+q2)

(u − q2)

]
du (4.31)

and q2 =
√

u2 + τ 2. Consequently, the flow local to the cantilever is given by

ψ = C

(
−1

r

(
1 +

2K1(
√

iγ )√
iγK0(

√
iγ )

)
+

2K1(
√

iγ r)√
iγK0(

√
iγ )

+
I (τ, γ )r

∆2

)
cos θ + O(∆−1).

(4.32)
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We can satisfy ψ = −r cos θ on S by setting C =
(
1 − ∆−2I (τ, γ )

)−1
. Only the

Stokeslet exerts drag on the cantilever and thus the drag is

D = πCiγ 2

(
1 +

4K1(
√

iγ )√
iγK0(

√
iγ )

)
≈

(
1 − I (τ, γ )

∆2

)−1 (
4π

ln 2 − ln(
√

iγ ) − ε0

+ O(γ 2)

)
,

(4.33)

where, as in § 4.2.1, ε0 is Euler’s constant. In the limit τ � 1 we are able to evaluate
the integral I (τ, γ ) asymptotically, to obtain

D =
4π

(ln ∆ + ln 2 − 1 − τ 2/4)
+ O(γ 2(ln ∆)−1, (∆2 ln γ )−1, γ 4), (4.34)

with τ 2/4 giving the first inertial correction to the quasi-steady result (4.14) for region
V. Conversely, in the limit τ � 1, since I/∆2 ∝ (τ 2 ln τ )−1 we see that (4.33) reduces
to the region-VI limit (4.15).

4.3.2. Small separations: region III, γ −4/3 � ∆ � γ −1 � 1

A second interaction between viscous, inertial and wall effects occurs in region
III. The boundaries of this region are defined as follows. For ∆ ∼ γ −1 � 1 (the
II/III boundary), the Stokes layers on the cantilever and wall are comparable in
thickness to the wall–cantilever spacing. Thus the inner lubrication flow has a mixed
viscous–inertial structure over a horizontal length scale ∆1/2. However, the drag
remains dominated by the O(γ 2) inviscid contribution from the outer flow. As ∆ is
reduced, the lubrication region develops a nested structure, with a viscous region of
width ∆1/2 (contributing an O(∆−3/2) drag, see (4.4)) lying within a viscous/inertial
region of width γ −1/2. Once ∆ = O(γ −4/3), the drag from the viscous region becomes
comparable with the leading-order inertial drag in the outer region; this defines the
III/IV boundary. For ∆ � γ −4/3, we enter region IV and (4.4) dominates.

We derive here an expression connecting the behaviour in regions II and IV. It is
sufficient to work along the region II/III boundary, since the nested boundary layer
structure in region III is captured implicitly. Along this boundary, we anticipate drag
contributions at O(γ 2) (inviscid outer), O(γ 3/2) (viscous/inviscid inner) and O(γ )
(viscous outer). Thus both inner and outer regions are needed for a reliable estimate
of the drag.

The inviscid flow is found by conformally mapping the outer flow domain, in which
the cantilever appears to be in contact with the wall, to an infinite strip, where Fourier
transform methods yield the following streamfunction for the flow (see Appendix B):

ψ = 4π

∫ ∞

0

(
e−2πk

sinh 2πk

)
sinh (2πkη) sin (2πkξ ) dk. (4.35)

In the lubrication region, (4.1) yields the following governing equations:

ψ̌ y̌y̌y̌ − iτ 2ψ̌ y̌ = p̌x̌ , p̌y̌ = 0, (4.36a)

up to an O(∆) correction, subject to the boundary conditions (4.2b), which are
satisfied by

ψ̌ = A(x̌)e
√

iτ y̌ + B(x̌)e−
√

iτ y̌ + (
√

iτ )−2C(x̌)y̌ + (
√

iτ )−2E(x̌). (4.37a)
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Defining κ =
√

iτ (1 + x̌2/2), the coefficients in (4.37a) are

A(x̌) =
1

2

(
x̌ (1 − e−κ )

κ sinh τ − 2 cosh κ + 2

)
, B(x̌) =

1

2

(
x̌ (1 − eκ )

κ sinh κ − 2 cosh κ + 2

)
,

C(x̌) =
−(

√
iτ )3 x̌ sinh κ

κ sinh κ − 2 cosh κ + 2
, E(x̌) =

−(
√

iτ )2 x̌(1 − cosh κ)

κ sinh κ − 2 cosh κ + 2
.




(4.37b)
For τ � 1 with x̌ = O(1), (4.37) reduces to (4.3).

The leading-order drag in both the inner and outer flows comes from the pressure,
whose gradient we now express as a composite expansion. Adding the outer pO

θ and
inner pI

θ expressions for the pressure gradient, and subtracting off their common
expression pC

θ in the intermediate region between inner and outer, we arrive at the
following uniformly valid expression for the pressure gradient on S:

pθ = ∆−2
(
pI

θ + τ 2pO
θ − τ 2pC

θ

)
, (4.38a)

where

pI
θ = Ξ 3Θ sinhα (α sinhα − 2 coshα + 2)−1 , α = Ξ

(
1 + Θ2/2

)
, (4.38b)

pO
θ = 8iπ2

∫ ∞

0

(
ke−2πk

tanh 2πk

)
sin(2πk cos θ(1 + sin θ)−1)

(1 + sin θ)
dk, (4.38c)

pC
θ = 2i (θ + π/2)−1 , (4.38d)

Ξ =
√

i∆γ and Θ = ∆−1/2 (θ +π/2). We next numerically integrate pθ for the pressure,
which is then used to determine the drag:

D = 2

∫ π

0

(∫ β

0

pθ dθ

)
sin β dβ. (4.38e)

We have not included the cantilever boundary layers and secondary inviscid flows
in the outer flow, but (4.38) successfully connects the leading-order drag in region II
with that in region IV, as demonstrated numerically in § 5.1.2 below.

5. Results
We now present numerical results for circular and rectangular cantilevers. In § 5.1

we compare calculations for circular cantilevers using the scheme outlined in § 3.1
with the asymptotic predictions developed in § 4 in limiting cases. For rectangular
cantilevers (§ 5.2), using the scheme described in § 3.2, we investigate the effects of
varying the aspect ratio and we compare the drag with that for circular cantilevers.

5.1. Circular cantilevers

5.1.1. Streamlines

Figure 3 shows two sets of streamlines for a circular cantilever at unit distance from
the horizontal wall y = 0, each showing the instantaneous behaviour at three distinct
times in the oscillation cycle for γ 2 = 1 (panels a–c) and γ 2 = 10 (panels d–f ).
At both frequencies we see that there is an up–down asymmetry in the streamlines
induced by the presence of the wall. However, this asymmetry is less pronounced for
γ 2 = 10, indicating that, as viscous effects become confined to boundary surfaces,
wall effects diminish elsewhere in the flow. At t = 0 the cantilever passes through
its zero-displacement position; as the cantilever changes direction at t = π/2, closed
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Figure 3. Streamlines for a circular cantilever when ∆ = 1 at (a) t = 0, (b) t = π/2,
(c) t = π/2 + 0.1 when γ 2 = 1 and at the same times for γ 2 = 10, (d , e and f respectively).
The wall is located along the x-axis.

streamlines are shed from the cantilever’s surface. Such flow reversal has been noted
in other studies of oscillating bodies (Pozrikidis 1989b; Loewenberg 1994b) in the
absence of external boundaries. In the presence of a nearby wall we observe reversal
on this external boundary which, at γ 2 = 10, occurs fractionally earlier than the
reversal on the body’s surface.

5.1.2. Drag

Figure 4 presents numerical drag computations for a circular cantilever alongside
the corresponding asymptotic limits, highlighting the trends in drag as ∆ and γ are
varied. For fixed γ (figure 4a, b), a decrease in ∆ produces a monotonic increase in
the drag’s modulus and a monotonic decrease in its phase. This change is seen to be
a function of γ , occurring at lower values of ∆ as γ is increased. The results for fixed
∆ (figure 4c, d) show that the drag’s modulus increases and becomes less sensitive to
separation distance at larger γ . The phase tends towards the inviscid limit of π/2 as
γ is increased, but with the rate of convergence slower at small ∆.

An important feature of these results is the comprehensive coverage of parameter
space provided by the asymptotics, with good continuity between these limits. Thus
we are able to make a circuit of parameter space and use the asymptotics to explain
the dominant features which contribute to the drag. In figure 4(a, b) we see that, at
sufficiently small separations, steady lubrication theory (region IV, (4.4)) approximates
the drag well even at high frequencies. However, as the separation is increased the
behaviour of the drag depends upon the frequency. At low frequencies the lubrication
approximation to the drag is maintained until the separation increases to roughly one
tenth of the cantilever radius, at which point the finite dimensions of the cantilever
need to be taken into account. A geometrically more advanced quasi-steady estimate
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Figure 4. Modulus (a) and phase (b) of the drag when γ 2 = 0, 0.1, 1, 2, 3, 10, 30 plotted over
a range of ∆, together with modulus (c) and phase (d) of the drag when ∆ = 0.01, 0.1, 1, 10, 20
and 50, plotted over a range of γ . Thin solid lines correspond to numerical computations,
whilst asymptotic results for regions I/II (4.28), III (4.38e), IV (4.4), IV/V (4.9), V (4.14), V/VI
(4.33) and VI/I (4.15) (covering both I and VI) are shown with thicker dashed lines.

when ∆ = O(1) (IV/V, (4.9)) and the steady Stokeslet image system, valid for ∆ � 1
(V, (4.14)), work well until the separation becomes comparable with the viscous length
γ −1, at which point it breaks down due to the importance of unsteadiness on these
length scales. However, here we are able to turn to the unsteady Stokeslet image
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system (V/VI, (4.33)) which provides accurate estimates for the drag right up to
the unsteady unbounded limit (VI/I, (4.15)). Conversely, at high frequencies, steady
lubrication theory quickly fails and we require the merged boundary-layer model to
describe the transition to inertia-dominated flow (III, (4.38e)). This takes us to the
limit of inviscid flow, with viscous effects restricted to thin boundary layers on the
solid surfaces (I/II, (4.28)). In this limit, even at O(1) separations the presence of the
wall is seen to exert little influence upon the drag, illustrating the weaker nature of
the inviscid wall interactions in the high-frequency regime.

An alternative perspective is offered by figure 4(c, d), which shows how the
modulus and phase of the drag both increase monotonically with frequency at fixed
separation. At sufficiently large frequencies an inviscid flow plus boundary layers
(I/II) provides a good drag estimate, capturing the increase in the drag’s modulus
at small separations due to the inviscid wall interaction. However, in the small
separation limit, as the frequency is reduced, the boundary-layer model rapidly fails
and the merged boundary-layer model (III) describes the transition to quasi-steady
lubrication flow (IV). At large separations the boundary-layer approximation persists
for longer, yet provides a drag which is already estimated well by the unbounded fluid
limit (VI/I). As the frequency is decreased still further the distance over which vorticity
diffuses grows until becoming comparable with the large wall–cantilever separation,
resulting initially in a wall interaction which is governed by unsteady viscous flow
and finally in an interaction governed by steady viscous flow; the unsteady Stokeslet
image system (V/VI) is seen to capture this transition.

5.2. Rectangular cantilevers

We now examine the effect of geometry upon drag using boundary-element results
for rectangular cantilevers. Calculating streamlines is arduous with boundary-element
methods; however, surface stresses are readily obtainable and serve to illustrate the
impact of the nearby wall. Figure 5 shows the vertical component of the surface stress
on the wall and cantilever, with square cross-section, for the case γ = ∆ = 1. The
difference in stress profiles on the top and bottom of the cantilever, as well as
the skewed shear stress on the cantilever’s side, are both attributable to the wall.
The integrable stress singularities at each corner of the body are evident, although in
practice it is likely that geometrical smoothing or wall slip (particular in gases) would
act to regularize this singular behaviour.

5.2.1. Drag

Rectangular cantilever drag results are presented in figure 6 for two cantilever
cross-sections: thin (aspect ratio 20) and square. The dependence of modulus and
phase on ∆ and γ is broadly similar to the circular case; however, we are now in a
position to assess the impact of differing aspect ratio. The dash–dotted lines represent
a lubrication limit for the drag on the cantilever, which is calculated analogously to
the ∆ � 1 case with a circular cantilever, but with the rescalings

y = ∆y̌, x = x̌, u = ∆−1ǔ, v = v̌, p = ∆−3p̌, D = ∆−3Ď. (5.1)

An analysis similar to that in § 4.3.2 gives a lubrication drag of

D =
2

3
i∆−1γ 2

( √
iτ sinh

√
iτ

2 − 2 cosh
√

iτ +
√

iτ sinh
√

iτ

)
, τ = γ∆ (5.2)

plus an O(γ 2) correction due to flow outside the gap. The impact on this drag of
introducing slip is examined in Appendix C.



Drag on an oscillating microcantilever 415

–1 0 1
–20

–10

0
(a)

Normal stresses

x

fy

fy

–1 0 1
–20

–10

0
(b)

Normal stresses

x

1 2 3
–10

–5

0

(c)

Shear stresses

y
–20 0 20

0

–10

20
(d)

Normal stresses

x

Figure 5. y-component of surface stress on (a) the top, (b) bottom and (c) side of a rectangular
cantilever with unit aspect ratio, when γ = 1 and ∆ = 1. Plot (d) shows the normal y-component
of surface stress on the wall. Real parts are given by a solid line and imaginary parts by a
dashed line.

In the quasi-steady limit, τ → 0, (5.2) reduces to D = 8∆−3, in agreement with
Kim et al. (2001), who also calculate the first drag correction arising from a quasi-
steady outer flow when the rectangle is infinitely thin. Asymptotically matching the
lubrication flow to a local flow at the cantilever’s edges and to an outer flow where
the presence of the plate is accounted for by point sources on the wall, they obtained

D = 8∆−3 + 14.8560∆−2. (5.3)

Figure 6(a, c) illustrates how this correction improves the drag estimate. Moreover,
figure 6(c, d) demonstrates the effectiveness of (5.2) in capturing the influence of flow
inertia on the drag in the lubrication regime, as well as the effectiveness of the inviscid
boundary-element-method predictions (3.6) at high frequencies.

These results confirm that thin cantilevers experience less drag than square ones,
but this distinction is diminished when quasi-steady flow dominates the drag, i.e.
when either γ or ∆ become sufficiently small. If the cantilever is sufficiently close to
the wall, the phase of the drag is independent of the cantilever aspect ratio. However,
as the separation is increased the phases in each case differ, particularly at higher
frequencies. If the separation is increased still further, the phase appears, once again,
to become less sensitive to the thickness of the cantilever.
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Figure 6. Modulus (a) and phase (b) of the drag on a cantilever, of width 2 and thickness 0.1
(solid line) or 2 (dashed line), over a range of ∆ and the modulus (c) and phase (d) of the drag
over a range of γ . The unsteady lubrication limit (5.2), for an infinitely thin plate, is marked
by a thick dash–dotted line, and is plotted alongside a quasi-steady limit which accounts for
the full geometry (5.3). The thick solid lines in (c, d) show drag predictions computed using a
separate boundary-element scheme for the potential flow (3.6).
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Figure 7. Comparison between (a) the modulus and (b) the phase of the drag on a circular
cantilever (solid line) and rectangular cantilever with thickness 0.1 (dashed line).

Comparing circular and rectangular cantilevers (figure 7) we see that the drag on a
thin rectangular cantilever is similar to that on a circular cantilever of the same width
for sufficiently large wall–cantilever separations. The similarity between the drag for
an oscillating infinitely thin plate and an oscillating cylinder in an unbounded fluid,
first noted by Tuck (1964), persists at moderate distances from a rigid wall (and
moreover, as shown in figure 6(a), extends to cantilevers of other aspect ratios at low
frequencies). However, the drag on a thin cantilever diverges significantly from that
on a circular cantilever as ∆ falls. For separations less than roughly one cantilever
width there is a dramatic increase in the drag’s modulus and a significant drop in its
phase (the former more so and the latter less so at low frequencies; see figure 7a, b),
reflecting the differing size of the lubrication regions in each case.

6. Summary and conclusions
We have examined the influence of a nearby rigid wall on the drag experienced

by a two-dimensional oscillating cantilever as a function of the dimensionless
oscillation frequency γ 2, the separation distance ∆ and the cantilever shape. Drag
predictions have been obtained numerically, using a finite-difference method (for
circular cantilevers) and a boundary-element method (for rectangular cantilevers),
accompanied (for circular cantilevers) by extensive asymptotic results spanning
all extremes of (γ, ∆)-parameter space. We assumed throughout that oscillation
amplitudes were small enough for the linearized Stokes equations and linearized
boundary conditions to be valid. A summary of our leading-order asymptotic drag
expressions for circular cylinders (in dimensional form) has been compiled in table 1.

Our results demonstrate the boundaries in parameter space across which wall effects
have a significant leading-order influence on the drag. At low frequencies (γ � 1), wall
effects are important for ∆ = O(γ −1), indicating that wall interactions are significant
even at large separation distances (as expected from Stokes’ paradox). As ∆ is reduced
from an initially large value, we demonstrated how wall effects have their first non
trivial impact when ∆ ∼ γ −1 by using the image system of an unsteady Stokeslet to
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Region D∗

IV 3
√

2πµU∆−3/2

IV/V −8πµU (1 + ∆)

(
2

√
∆(∆ + 2) + (1 + ∆) ln

(
1 + ∆ −

√
∆(∆ + 2)

1 + ∆ +
√

∆(∆ + 2)

))−1

V
4πµ U

ln ∆
+

4πµU (1 − ln 2)

(ln ∆)2

V/VI µ U

(
1 − I (∆, R

√
ωρ/µ)

∆2

)−1 (
4π

ln 2 − ln(R
√

iωρ/µ) − ε0

)

VI − 4πµU

ln R
√

ωρ/µ
+

4π (iπ/4 + ε0 − ln 2) µU

(ln R
√

ωρ/µ)2

VI/I
iπR2ωρ U

µ

(
1 +

4K1(R
√

iωρ/µ)

R
√

iωρ/µK0(R
√

iωρ/µ)

)

I iπR2ωρU/µ + 4πUR
√

iωρ/µ

I/II See (4.28)

III See (4.38e)

Table 1. Summary of the leading-order drag Re(D∗ eiωt ) experienced by a circular cylinder
of radius R oscillating in a fluid of viscosity µ with frequency ω normally to a wall, with its
centre a height y0 above the wall. Here ∆ = (y0 − R)/R, ε0 ≈ 0.57721 and I is given by (4.31).
Regions of parameter space are as shown in figure 2.

determine the drag on a circular cylinder. This image system is distributed along the
wall, thus appearing as an integral in the expression for the drag (4.33). For ∆ = o(γ −1)
the flow is dominated by quasi-steady viscous effects: the magnitude of the drag rises
rapidly (figures 4a, b, 6a, b) until being dominated by viscous lubrication forces as
∆ → 0. In this lubrication regime there is, as expected, a substantial difference between
circular and rectangular cantilevers (figure 7a) because of the different aspect ratios
of the thin-gap regions. At high frequencies (γ � 1), when viscous effects are typically
confined to thin Stokes layers, the wall has negligible effect on the drag until the
separation is very small. For circular cantilevers, for ∆ ∼ γ −1, there is the first non-
trivial change in the structure of the flow when the Stokes layers on the cantilever
and wall overlap. However it is not until ∆ ∼ γ −4/3 that the leading-order drag
depends explicitly on ∆. For sufficiently small ∆, the quasi-steady lubrication drag
dominates that from the outer oscillatory flow. For rectangular cantilevers oscillating
at high frequency the wall has a much more substantial effect. For γ −1 � ∆ � 1 the
unsteady acceleration of liquid along the narrow gap dominates the drag (see (5.2);
this is an inviscid lubrication regime), for ∆ ∼ γ −1 the Stokes layers fill the gap, and
then for ∆ � γ −1 the dominant drag is from viscous lubrication forces.

One of the most striking findings for rectangular cantilevers is the very weak
dependence of drag on aspect ratio. Comparing rectangular cantilevers with aspect
ratios of 1 and 20, figure 6 shows (not surprisingly) negligible difference in the thin-
gap limit (∆ � 1), and differences of only a few percent at high frequencies. This
high-frequency insensitivity is also demonstrated in figure 7, which reflects Tuck’s
(1964) observation that a plate serves as a good model for a cylinder (in the absence
of a wall). However, figure 7 provides clear evidence of the limitations of (4.15), an
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approximation used commonly in AFM studies (e.g. Sader 1998): the drag on a thin
rectangular cantilever rises dramatically (note the logarithmic scale in figure 7) and
the phase falls substantially as ∆ falls below O(1) values, an experimentally realized
regime.

We have assumed throughout that the amplitude of oscillation is small enough for
nonlinear effects such as steady streaming to be negligible. We implicitly assumed
the oscillation amplitude to be much smaller than the boundary-layer thickness,
which is a restrictive condition at high frequencies. Furthermore, we have also taken
no account of possible flow instabilities. However, in a regime in which the AFM
operates (with the cantilever close to the sample but oscillating at very high frequency,
with γ −1 � ∆ � 1), the flow is likely to exhibit some interesting weakly nonlinear
effects. Suppose a rectangular cantilever oscillates with amplitude εR, where R is the
cantilever width. The O(ε2) steady-streaming flow beneath the cantilever is likely to
resemble that in an infinitely long pulsating channel, as described by Secomb (1978).
Subsequently Hall & Papegeorgiou (1999) showed how a nonlinear flow synchronous
with the oscillating wall arises for (in our variables) γ > 3.39/ε (this is a large-
Reynolds-number asymptotic limit, assuming γ 2∆2 � 1; a similar result was also
obtained by Watson et al. 1990), and that this flow then loses stability to quasi-
periodic oscillations for γ > 5.99/ε. This indicates that, even at small amplitudes, an
AFM cantilever can experience a steady force (due to steady streaming) as well as a
force that fluctuates at a frequency different to that of the driver. At lower Reynolds
numbers, the quasi-steady flow between pulsating plates may also be unstable to
growing Tollmien–Schlichting waves (Stuart et al. 1990).

A key aspect of any experimental system is three-dimensionality, and we should be
concerned that our assumption of two-dimensional flow may be unrealistic. Certainly
complex cantilever shapes, or tilt relative to the plane, will generate three-dimensional
flows. For simplicity, let us consider instead a circular cylinder of length Λ � 1
(measured relative to its radius R) oscillating with its axis parallel to the wall,
again at small amplitudes in a direction normal to the wall. Two effects promote
two-dimensionality. First, when the cylinder is close to the wall and the flow is quasi-
steady, the wall screens the flow from end effects; this will be the case for ∆ � Λ and
the frequency sufficiently low. Second, when the cylinder is oscillating at sufficiently
high frequency, the limited distance over which vorticity diffuses from the cylinder
surface during one period makes the viscous component of the flow around the
cylinder predominantly two-dimensional provided γ � 1/Λ (so that the majority of
the viscous flow around the cylinder does not ‘feel’ the finite length of the cylinder);
we have already seen that the outer inertial flow (in regions VI and I) is then largely
insensitive to the wall, since wall–body interactions in two dimensions occur via
relatively weak image dipoles. As the body moves away from the wall, across ∆ ∼ Λ

with γ � 1/Λ, the inviscid flow may develop a three-dimensional structure but the
drag will almost certainly remain largely insensitive to ∆. Thus we anticipate that the
drag will show leading-order dependence on the finite length of the cylinder only for
γ � 1/Λ, ∆ � Λ (in our present formulation, this represents very slow oscillations
of a long body very far from the wall). We present calculations in this regime using
slender-body theory for unsteady Stokes flow elsewhere (Clarke et al. 2005). The
argument above supports the application of the present two-dimensional model to
experiments involving oscillating cantilevers with simple geometric shapes.

Within the AFM community there is considerable interest in quantifying
and exploiting hydrodynamic effects both for tapping mode (probing sample
properties) and thermal calibration. As previously mentioned, the determination
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Width (R) Thickness (2W ) Visc. (ν) Sep. (y0 − h) Freq. (ω) ∆ γ 2

(cm) (cm) (cm2s−1) (cm) Hz

Tapping-mode 10−3 10−4 10−2 10−4 104–105 0.1 1–10
Calibration 10−3 10−4 10−2 10−2 103–104 10 0.1–1

Table 2. Typical operating parameters for AFM imaging and calibration (Santos &
Castanho 2004; Chon et al. 2000).

of cantilever spring constants presents a major challenge, with one widely used
non-intrusive (and often imprecise) technique involving the analysis of thermal
spectra (Sader 1998; Paul & Cross 2004). Currently thermal calibration takes place
in essentially unbounded fluid. However, the hydrodynamic results presented here,
when incorporated into a model of cantilever dynamics, offer the means to quantify
the spectral flattening reported by Benmouna & Johannsmann (2002) and Nnebe &
Schneider (2004) and, consequently, opens up new opportunities to extract quantities
such as the cantilever spring constant more precisely. Representative parameter values
for AFM imaging and calibration are given in table 2.

As mentioned in § 1, the microscopic dimensions of AFM cantilevers raise important
questions about the validity of both the no-slip condition and the continuum
approximation. The effects of slip are illustrated in Appendix C. In air, when operating
far from the wall, we estimate the Knudsen number Kn2 based on cantilever half-width
to be approximately 0.014. For most practical surfaces the molecular mean free path
is comparable in magnitude to the slip length (Gad-El-Hak 2001), so that L ≈ Kn2. L

is likely to be smaller in liquids (typically L ≈ 0.004) provided the cantilever surface is
smooth and uncontaminated (Cottin-Bizonne et al. 2005). Figure 9(a, b) in Appendix
C shows how the drag on an unbounded circular cantilever when L � 0.02 differs
from the no-slip value by an O(L) amount, but in a frequency-dependent manner;
recent boundary-element computations of unbounded oscillatory flow in a multiple-
cantilever system (Ding & Wenjiig 2004) report the same order of magnitude for the
drag correction. Slip effects are likely to be more important for cantilevers operating
in either air or liquid very close to a substrate, when the drag (at least at sufficiently
low frequencies) depends on L/∆ (the ratio of slip length to gap width). In liquids, slip
lengths on hydrophobic surfaces of order 1 µm have been reported (Zhu & Granick
2001), possibly as a result of surface contamination (Cottin-Bizonne et al. 2005), and
similarly large values can be anticipated for some coated or biological interfaces.
Substrate-dependent slip can then have a leading-order effect on drag (as illustrated
by figure 9c, d). For a cantilever very close to a substrate in air, the present model
may lose its validity both through high values of slip and through discrete molecular
effects (treated by Gallis & Torczynski 2004). The drag results presented here must
therefore be interpreted with considerable caution in some circumstances, although
the present results provide a foundation on which to base further studies.

Traditionally, thermal noise contamination is a hindrance to sampling in liquid
environments. However, thermally excited cantilevers can be used to probe the
micro-rheology of biological specimens. The nature of the technique means that the
cantilever oscillates in close proximity to the substrate; the benefits of an increased
understanding of wall effects in oscillatory Stokes flow are therefore clear (Ma,
Jimenez & Rajagopalan 2000; Rajagopalan 2000). Even AFM techniques traditionally
associated with quasi-steady flow (e.g. single-molecule measurements) are moving into
territory where flow inertia could become non-negligible, through the development of
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higher-speed modes of AFM operation designed to capture biology in real time and to
counter effects such as sample drift during measurement. Under these circumstances
existing quasi-steady models (e.g. Vinogradova et al. 2001; Alcaraz 2002) may need
to be revised to take account of the unsteadiness issues addressed here.

This work was supported by EPSRC grant GR/R88991. We are grateful to
Professor John Billingham for several helpful conversations.

Appendix A. Inviscid flow for γ � 1, γ −1 � ∆

Here we consider the inviscid flow generated by high-frequency oscillations (γ � 1)
of a circular cantilever when boundary layers are much thinner than the wall–
cantilever distance (∆ � γ −1). In bipolar coordinates (3.1) the flow is governed by
ψ

(0)
ξξ + ψ (0)

ηη = 0 subject to

ψ (0)(ξ, 0) = 0, ψ (0)(0, η) = 0, ψ (0)(−π, η) = 0, (A 1a)

ψ (0)(ξ, η1) = c sin ξ/(cosh η1 − cos ξ ). (A 1b)

We express ψ (0) as a Fourier series satisfying (A 1a),

ψ (0) =

∞∑
n=0

an sinh nη sin nξ. (A 2)

The coefficients an are determined by expressing the remaining boundary condition
as

∞∑
n=1

an sinh nη1 sin nξ =
c sin ξ

cosh η1 − cos ξ
= 2c

∞∑
n=1

e−nη1 sin nξ (A 3)

(η1 = cosh−1(1 + ∆)) which yields (4.20). The slip velocities on the cantilever surface
and on the wall are then

us
c =

∞∑
n=1

[(c − dn) (n − 1)en−1 − (c + dn) (n + 1)en+1 + 2dnnen] sinh nη1 sin nξ, (A 4a)

us
w =

∞∑
n=1

[2nen − (n − 1)en−1 − (n + 1)en+1] sin nξ, (A 4b)

where dn = (1 + ∆)/ tanh nη1 and en = e−nη1/ sinh nη1.

Appendix B. Inviscid flow for γ � 1, ∆ � γ −1

When γ � 1, ∆ � γ −1 the outer inviscid flow sees the cantilever as touching the
wall (figure 8). In order to model this flow we employ the conformal mapping

ξ = −2x/(x2 + y2), η = 2y/(x2 + y2). (B 1)

Laplace’s equation ψ
(0)
ξξ + ψ (0)

ηη = 0 must then be solved in the infinite strip 0 � η � 1.
In this new flow domain, η = 0 and η = 1 represent the wall and cantilever’s surface,
respectively, and ξ = 0 represents the vertical line of symmetry (see figure 8), giving
the boundary conditions

ψ (0)(ξ, 0) = ψ (0)(0, η) = 0, ψ (0)(ξ, 1) = −x = 2ξ/(ξ 2 + 1),
ψ (0)(ξ, η) → 2η/ξ as ξ → ∞.

}
(B 2)
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We express the streamfunction in the form

ψ (0)(ξ, η) = 2

∫ ∞

0

A(k) sinh 2πkη sin 2πkξ dk, (B 3)

which satisfies the homogeneous boundary conditions, and determine A(k) by
imposing the condition on the cantilever surface that

ψ (0)(ξ, 1) = 2

∫ ∞

0

A(k) sinh(2πk) sin(2πkξ ) dk =
2ξ

(ξ 2 + 1)
= 4π

∫ ∞

0

e−2πk sin(2πkξ ) dk,

(B 4)
which yields (4.35).

Appendix C. The effects of slip
To illustrate the implications of relaxing the no-slip condition, we revisit the cases

of an unbounded circular cantilever (§ 4.2.1) and rectangular cantilever near a wall
(§ 5.2.1), recalculating the drag using the Navier-slip condition (2.3).

C.1. Unbounded circular cantilever (region VI/I)

In streamfunction form, the flow is governed by (2.5a) subject to

ur = sin θ, uθ = L
∂

∂r

(uθ

r

)
+ cos θ (C 1)

on the cylinder surface r = 1, i.e.

ψ(1, θ) = − cos θ, −(1 + L)
∂ψ

∂r

∣∣∣∣
r=1

= −L
∂2ψ

∂r2

∣∣∣∣
r=1

+ cos θ, (C 2)

with u → 0 as r → ∞. This is satisfied by

ψ =

(
(CK1(

√
iγ ) − 1)

r
− CK1(

√
iγ r)

)
cos θ, (C 3)

C = − (2 + 3L)√
iγK0(

√
iγ )

(
1 + L

(
2K0(

√
iγ ) +

√
iγK1(

√
iγ )

K0(
√

iγ )

))−1

. (C 4)
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Figure 9. Variation in (a, c) amplitude and (b, d) phase of the drag (C 5, C 6) with slip length
L (scaled on ∆ in c and d), normalized on the no-slip value D0: (a) and (b) relate to an
unbounded cylinder oscillating at frequencies γ = 0.1, 1, 10, 200; (c) and (d) correspond to
the lubrication drag on a plate oscillating near a wall when ∆ = 10−1 and γ = 10, 100, 1000.
Inviscid limits are shown with thick solid lines. The maximum deviation in the amplitude (e)
and phase (f ) of the drag are also plotted as a function of γ for two different L.

The drag is then found to be

D = −iπγ 2(1 − 2CK1(
√

iγ )). (C 5)

At leading order in L we recover the no-slip expression (4.15) and the high-frequency
limit γ � 1 is dominated by the inviscid contribution Dinv = −iπγ 2. The amplitude
and phase of the drag are plotted in figure 9(a, b) respectively. For small γ the drag
is almost linear in L and slip acts to decrease the amplitude and phase of the drag;
however, these trends change at much larger γ . Initially the slip’s influence increases
with γ , yet after a point its impact declines, tending towards a largely slip-insensitive
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inviscid limit. This phenomenon is displayed in figure 9(e, f ), where it can be seen
that there exists a non-zero γ which maximizes drag variations at a given slip length.
We found that the frequency γ0 which maximizes the reduction in drag amplitude
satisfies γ −2

0 ≈ 0.4 L (although we could not identify an equivalent relationship for the
drag’s phase).

C.2. Rectangular cantilever in the lubrication limit (τ ≡ ∆γ = O(1), ∆ � 1)

Adopting (5.1), we can re-derive the lubrication drag on a rectangular cantilever
with Navier-slip conditions on both the cantilever and nearby wall, assuming ǔ= ±
(L/∆)∂ǔ/∂y̌ on y̌ = (1 ∓ 1)/2. Following similar analysis as before gives the leading-
order drag as

D = −2α+γ 3

3
√

i

(
√

iτα+ + e−
√

iτ − 1

− (α+ + α−e−
√

iτ )(cosh
√

iτ − 1 +
√

iτ (L/∆) sinh
√

iτ )

2
√

iτ (L/∆) cosh
√

iτ + (1 + iτ 2(L/∆)2) sinh
√

iτ

)−1

, (C 6)

where α± =
√

iτ (L/∆) ± 1. For (L/∆) � 1,

D =
2

3
i∆−3τ 2

( √
iτ sinh

√
iτ

2 − 2 cosh
√

iτ +
√

iτ sinh
√

iτ

)

+
4

3

L∆−4τ 4(1 − cosh
√

iτ )2

(2 − 2 cosh
√

iτ +
√

iτ sinh
√

iτ )2
+ O(L2/∆5). (C 7)

At leading order we recover the no-slip result (5.2). When the gap separation is much
smaller than the boundary-layer thickness (τ � 1), (C 6) reduces to the quasi-steady
limit D = 8∆−3/(1 + 6(L/∆)) (cf. Vinogradova 1995). Alternatively, in the limit where
boundary layers are much thinner than the separation distance (τ � 1), the drag
(C 6) tends to the inviscid limit Dinv = 2

3
iγ 2∆−1. In figure 9(c, d) we again see how

slip influences the drag. As with the unbounded cylinder, at low γ the slip–drag
relationship is essentially linear, becoming less so as γ is increased, until finally the
inviscid limit is attained where slip matters little. Unlike the cylinder case, however,
slip has its greatest influence in the quasi-steady limit, and only a weak effect at high
γ (see figure 9e, f ).
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